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ABSTRACT

Robustness properties of nonlinear extended Kalman
filters with constant gains and modelling errors
are presented. Sufficient conditions for the non-
divergence of state estimates generated by such
nonlinear estimators are given. In addition, the
overall robustness and stability properties of
closed-loop stochastic regulators, based upon the
Linear-Quadratic-Gaussian design methodology using
linearized dynamics, are presented; the sufficient
conditions for closed-loop stability have a
"separation-type" property.

1. INTRODUCTION

The substantial real-time computational burden im-
posed by the extended Kalman filter (EKF) and re-
lated suboptimal nonlinear estimators (cf. (1, Ch.
6]) significantly limits the scope of applications
for which these estimators are practical. The
major portion of this computational burden results
from calculations associated with propagating the
error-covarisnce matrix, which in turn is used for
real-time updating of the gain matrix acting on the
filter residuals. When one considers the gross
nature of the approximations that are routinely
made in modeling the stochastic disturbances af-
fecting a system and to a lesser extent in model-
ing the interplay between these disturbances and
the system's nonlinearities, it seems somewhat
surprising that so much real-time computational
effort should be devoted to careful propagation of
the model's error-covariance matrix. The empirical
fact that the EKF performs well in many applications

ESL-P-741

examine the possibility of employing a pre-computed
approximation to the EKF residual-gain, thereby
entirely eliminating the enormous computational
burden of real-time error-covariance propaaation.
The principal implications of the results we have
obtained in this connection are three-fold:

First, we have found that the real-time propagation
of error-covariance may actually be unnecessary.
Specifically, our results imply that for many ap-
plications one can obtain satisfactory performance
from a constant-gain extended Kalman filter (CGEKF),
designed to be optimal for a constant stochastic
linear model crudely approximating the actual non-
linear system.

Secondly, aided by the structural simplicity of
the CGEKF, we have been able to apply modern input-
output techniques of analysis to prove that the
CGEKF is intrinsically robust against the effects
of approximations introduced in the design of its
residual-gain matrix. That is, we have proved

that the CGEKF design approach yields under certain
conditions a nondivergent nonlinear estimator even
when a relatively crude stochastic linear system
model is used in designing the residual gain.

These robustness results take the form of analyti-
cally verifiable conditions which also can be used
to test specific CGEKF designs for nondivergence,
thereby reducing the engineer's dependence on

Monte Carlo simulation for design validation. More-
over, the nature of these nondivergence conditions
is such as to provide a basis for the constructive
modification and improvement of CGEKF designs.

:=P'despite the gross nature of these routine approxi-

Q_mations suggests that perhaps the record of suc-

<::>cesses enjoyed by the EKF is attributable to an

<:_J;ntr1nsic robustress against the effects of ap-
proximations introduced in the design of its resi-
dual-gain.

Thirdly, our results combine with the linear-
quadratic-optimal-regulator robustness results of
[2)-[3) in a fashion reminiscent of the separation
theorem of estimation and control to suggest a
powerful new technique, based on linear-quadratic-
Gaussian optimal feedback theory, for the synthesis
of simplified dynamical output-feedback compensa-
tors for nonlinear regulator systems. The tech-
nique leads to a feedback compensator design con-
sisting of a cascade of a CGEKF and an optimal
constant linear-quadratic state-feedback (LQSF)
gain matrix. We have proved that the inherent
robustness of optimal linear-quadratic state-
feedback against unmodeled nonlinearity [2]-(3)
combines with the intrinsic robustness of the
CGEKF to assure that such feedback designs will be
closed-loop stable even in systems with substantial
nonlinearity.

ith a view towards designing nonlinear estimators
e—with Greatly reduced real-time computational
equirements, we have been thusly motivated to
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The aforementioned CGEKF robustness, nondivergence,
and regulator stability results are derived in the
general context of the class of constant-gain non-
linear estimators whose design is not necessarily
based on statistical considerations—for example,
designs intended to optimize structural simplicity
or error-transient response, i.e. nonlinear ob-
servers (cf. [(4)). This general class of constant-
gain nonlinear estimators includes as a special
case the CGEKF, which is designed to be optimal
with respect to a statistical criterion. One can
supoptimally synthesize constant-gain nonlinear
estimators of this general class employing the

same design approach as is used for the CGEKF —
using a constant linear approximation of the actual
nonlinear system, simply design the residual-gain
to be optimal with respect to the design criterion
of interest. In the context of this broader class
of suboptimal nonlinear estimators, our results
provide analytically verifiable conditions which
can be used to test the nondivergence of these
estimators and to evaluate their robustness against
the effects of design approximations; though one
cannot in general expect such designs to be as ro-
bust as the CGEKF. The CGEKF output-feedback se-
paration-type property extends to this broader
class of estimators, showing that the nondivergent
estimates can, unconditionally, be substituted
true values in otherwise-stable feedback systems
without ever causing instability.

2. RELATED LITERATURE

The literature on the subject of robustness and
computational considerations in nonlinear estima-
tion is sparse and largely inconclusive. The dis-
cussion of nonlinear estimation in Schweppe [5,

ch. 13] provides a good intuitive understanding of
the trade-offs between computational requirements
and residual-gain choice; though the possibility of
a constant residual-gain is not explicity consider-
ed. The idea of using a constant residual-gain for
linear filtering is wellknown (cf. [1, pp. 238-
242]), but the connection with nonlinear filtering
has not been established. Of the existing litera-
ture on nonlinear estimation, (4] and (6] appear

to be the most closely related to the present paper.

Gilman and Rhodes [6] suggest a procedure for syn-
thesizing nonlinear estimators with a pre-computable,
but time-varying, residual-gain. Their estimator,
like the EKF and CGEKF, has the intuitively appeal-
ing structure of a model-reference estimator (cf.
[5, p.403]); that is, it consists of an internal
model of the system dynamics with observations en-
tering via a gain acting on the residual error be-
tween the system and model outputs. The distin-
guishing feature of the estimator suggested in (6]
is that the residual-gain is chosen so as to mini-
mize a certain upper bound on the mean-square esti-
mate error. This procedure tends to ensure a ro-
bust design since, assuming the minimal value of
the error-bound does not "blow-up"”, the estimator
cannot diverge. A limitation of this design pro-
cedure is that the error-bound may be very loose
for systems with substantial nonlinearity; so there
is no assurance that the bound-minimizing residual-
gain is a good choice. Also, there is no a priori
guarantee that the resultant estimator will even be

stable since the minimal error-bound may become
arbitrarily large as time elapses.

Tarn and Rasis (4] have proposed a constant-gain
model-reference-type nonlinear estimator which is
a natural extension of Luenberger's observer for
linear systems, having a design based solely on
stability considerations. The results of [4] show
that, given such a nonlinear observer design, if
certain Lyapunov functions can be found, then one
can conclude that

a) The estimator is nondivergent;

b) The estimator can be used for state reconstruc-
tion in a full-state feedback system without caus-
ing instability. However, from an engineering
standpoint the results of [4] are deficient in that
they are nonconstructive: no design synthesis pro-
cedure is suggested; no method is proposed for con-
structing the Lyapunov functions required to test
the stability of a design; no procedure is suggested
for optimizing the estimate accuracy of the design.
The CGEKF results presented in the present paper
address all these deficiencies by providing a con-
structive procedure for synthesizing stable con-
stant-gain model-reference estimator designs which
are to a first approximation optimally accurate.
Moreover, our results prove that, provided the
estimator is nondivergent, it can be used for

state reconstruction without ever causing instabi-
lity, independent of the availability of any
Lyapunov functions.

3. NOTATION AND TERMINOLOGY

In this paper the input-output view of systems is
taken, considering a system to be an interconnec-
tion of "black boxes" each representable by its
input-output charactericstics. As will become
apparent, the input-output view provides a conve-
nient and natural setting for the discussion and
analysis of estimator robustness and divergence,
as well as feedback system stability. In this
section the pertinent terminology drawn from [7]-
(11) is reviewed and the notion of estimator di-
vergence is formalized.

An operator is a mapping of functions into func-
tions — such as is defined by a "black box" which
maps input time-functions into output time-functions.
An operator is said to be nonanticipative if the
value assumed by its output function at any time
instant t. does not depend on the values assumed
by its input function at times t > t_.. An operator
is said to be memoryless or equivalently nondyna-
mical if the instantaneous value of its output at
time t_ depends only on the value of its input at
time t .. A dynamical operator is an operator which
is not necessarily nondynamical.

To facilitate the discussion, the various input and
output functions considered in this paper are pre-

sumed to be imbedded in function spaces of the

type cthen
1]

g
My(R, RD) & (z: R, + &) RN g

(11, p. 125] on which are defined the following
inner product and norm respectively
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<z., 2,> = lim = (t) z,(t)at (3.2)
2y 2 ol f
0
Nzl & /== . (3.3)

The quantity || 5"2 can be viewed as the "average
power" in the function z; in fact, if z is genera-
ted by a sutiona? random process (cf. [12, p.
300]), then || z || is simply the expected value
of z"(t) ;(t).

Because the space Mz may be unfamiliar to many
readers, we briefly discuss its relation to the
similar, but distinct, space L2 which is more wide-
ly used in input-output system analysis. The fea-
ture that distinguish M from L, is the intro-
duction of the "normalizing factor" 1/T into the
inner product (3.2). Whereas, the Lz-nom is appro-
priately viewed as a measure of the "total energy"
of a function, the normalizing factor 1/T leads to
the "average power" interpretation of the norm
(3.3). The space M2 is larger than L_, every func-
tion in L_ being inCluded in the subsface of M

2 2
conprised of functions of zero norm.

or norm of an operator F,denoted q(F) and
|| FI respectively, are defined by

q(F) & F|| [E=ll - (3.4)

o<|l z || <« |zl

The incremental gain of f is
l| Fz) - Fz, |

A
fy 8o e -2, - (3.5)
0< [lz)-z,ll < = i

1f g(F)< =, E is said to have finite gain. Like-
wise, "1f g (F) <o, then F is said to have finite
incremental gain. The operator F is bounded if in~
puts of finite norm produce outputs of finite norm;
i.e., for each z vithF[LII <o, there exists a scalar
p(z) > 0 such that || F z || < p(z). A dynamical
lystem is said to be stable if the operator de-
scribing its input-output characteristics is bounded;
the system is said to be finite gain stable if the
operator has finite gain. An operator F is said to
be strongly positive, denoted F > 0, if for some
€>0 and all z

<, Fz> > elzl?. (3.6)

The operator F is said to be positive, denoted
F >0, if (3.8) holds with €=0.

The derivative of the operator F at the point z. is
defined to be the linear operator VF(z ) having the
property that for all z

1
VF(z )z = 1im = (F(z, + €z) - Fz_), (3.7)
& € '~ =0 ~=0

provided that the indicated limit exists. When
the derivative VF(z ) exists, F is said to be dif-
For example, if F is memzyless.

ferentiable at 2z —0

i i
i.e., if (Fz)(t) = £(z(t)) for some £:R “+R 2,
then UF(z){s simply the Jacobian matrix 3_/8:
(cf£. 18, p. 19]). Alternatively, if F is a lin-

ear operator then VF(z)=F for all z.

The relevance of the above terminology to estima-
tion stems from the fact that for each control in-
put function u, the error e g_-_x_ of an estimator
can be represented as the output of an operator
Eu whose inputs are the system and measurement
nOises, i.e.,

gég-g-gu (E, 9. (3.8)

To formalize the notion of estimator divergence
the following definitions are introduced: an esti-
mator is nondivergent if its error operator is
bounded uniformly in u, i.e. if there exists a
scalar p(§, 8) > O such that

sup ||E (€, O] < (g, 0 (3.9)
. B

It is convergent if p(§, 8) = 0; it is nondivergent
with finite gain if

sup q(§“) < ®. (3.10)

Evidently, convergence implies nondivergence with
finite gain which in turn implies nondivergence.
These definitions can be loosely interpreted as
follows: an estimator is nondivergent if mean-square
bounded disturbances produce mean-square bounded
estimate-error; it is nondivergent with finite gain
if the mean-square estimate-error 1s proportional
to the magnitude of the disturbances; it is con-
vergent if the mean-square error always tends to
zero. An estimator that iz not nondivergent is
said to be divergent.

4. PROBLEM FORMULATION

We consider the problem of estimation for the non-
linear system

d
=X =Ax + Bu + £
R R (4.1)

A R 1
where
A, B, C are nonanticipative, continuous, almost-

everywhere differentiable, dynamic nonlinear opera-

tors with finite incremental cain;

Ee “2(R+' &, 8¢ Mz(R*. RP) are disturbance in-
put functions;

y is an RP-valued observed output function;
u is an R"-valued known control input function;

x is an R"-valued function which is to be esti-
mated based on knowledge of y and u.
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As a candidate for estimator we consider the con-
stant-gain model-reference-type esti-
mator

-~

HE=AE+Bu-HE @Y
(4.2)
g=c%
where g(g) is a matrix of appropriate dimensions
whose entries depend nondynamically on X. When

H(x) is independent of X and when A and C are non-
dynamical, then (4.2) is identical’in stTucture to
the so-called observer for nonlinear stochastic
systems proposed by Tarn and Rasis [4]; consequent-
ly we refer to the structure (4.2) as a nonlinear
observer., The CGEKF is a type of nonlinear observer,
just as a Kalman filter is a type of linear observ-
er.

A useful method for describing the dynamical evolu-
tion of the nonlinear observer's error,

e= X - x, (4.3)

a .
we-AWet+y ‘
- < (4.4)

r=_Clxe

A e

v = -H(X)-(x - 8) - § (4.5)
where

5é i Cx (4.6)
and A(x) and C(x) are dynamical nonlinear operators
defined by ~
5(5)5-A(x+ z) - Ax (4.7)
cmzlcxsn-cz (4.8)

~

for all z € M (R ' R ). From this feedback repre-
sentation of ghc error dynamics of the nonlinear
observer (4.2), it is immediately apparent that
the problem of choosing the residuval-gain _li(_?_(_) so
as to make the estimator nondivergent is identical
to the problem of choosing a stabilizing feedback
for the system (4.4).

In order to facilitate the selection of a suitable
residual-gain H(-), we assume that equation (4.4)
describing the "open-loop error-dynamics" admits
the nominal linearization

(

1%

1>

e+ v (4.9)

flo

r=c(x

1a
1o

where A(X) and C(X) are matrices of appropriate di-
mensions whose entries in general depend nondyna-
mically on X. The idea is to choose the gain H(X)
assuming that x is a constant function and that the
linearization (4 9) is exact. The problem is thus
reduced to a time-invariant linear estimation prob-
lem for which several methods are available for

choosing H(+), e.g. pole assignment (13, § 7.4] or
Kalman filtering [14, Ch. 7). For brevity of
notation, the arguments of A, C, and H are sup-
pressed in the sequal — clearly, the simplest esti-
mator structure results when A, C, and hence H

are chosen to be independent of x.

S. NONLINEAR OBSERVER RESULTS

We now state two basic theorems concerning the non-
linear observer (4.2). The first result, Theorem
1, states that substitution of estimates generated
by a nondivergent nonlinear observer for true
values in an otherwise-stable feedback control
system can never destabilize the closed-loop sys-
tem. This result has obvious implications regard-
ing the utility of nonlinear observers for state
reconstruction in nonlinear optimal and suboptimal
feedback control systems. The second result,
Theorem 2, gives sufficient conditions for a non-
linear observer to be nondivergent. The proofs
are in the appendix.

Theorem 1: Let G be a nonanticipative nonlinear
dynamical operator with finite incremental gain.
Suppose that the system (4.1) is closed-loop statle
(finite gain stable) with feedback u = G x. Then
the system (4.1) with feedback u = G X will also
be closed-loop stable (finite gain stable).

Theorem 2: Let the matrices P = P(k(t)) and § =
S(x(t)) be symmetric positive definite solutions
of the Lyapunov equation

(A-HCO)P + PA-HO)T + S =0 . (5.1)

If uniformly almost-everywhere

[A-VA(x)-H(c-ve(x)Ip + 35> 0, (5.2)

then the nonlinear observer (4.2) is nondivergent
with finite gain.l

We note that the condition (5.1) of Theorem 2 is
not restrictive: it can always be satisfied when
the residual-gain H is chosen under the assumption
the linearization (4.9) is exact since, for any
given positive definite S, the Lyapunov equation
(5.1) has a unique positive definite solution

P if any only if A-HC is a stable matrix [13,
P-341). In the situation in which (A, C) = (A, O,
the observer (4.2) will be nondivergent if and
only if (A-HC) is stable. Thus, when the residual-
gain H is chosen under the assumption that the
linearization (4.9) is exact, a P and an S satis-
fying (5.1) can always be found by simply picking
any positive definite S and solving (5.1) for P.

1!n gcnetal the matrices A, C, H, P, and S depend
on x(t) In t.his case (5.2) must hold uruformlz
with respect to x. Consequently, allowing A,

C, H, P and S to depend on x offers no advantaqe
with tegaxd to satisfying the nondivergence con=-
ditions of Theorem 2; though it may improve the

estimator's error statistics.
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l‘l‘he interesting part of Theorem 2 is the condition
(5.2). It characterizes a class of nonlinearities
. for which the nonlinear observer (4.2) is assured
i of being nondivergent. An important feature of
| Theorem 2 is the form of condition (5.2) —1it is
foxpussed in terms of the deviation of the system
(4.4) from the linearization (4.9) used in select-
'ing the residual-gain. When the deviation is zero
| (.e., (A, C)3(A, C)) then the condition (5.2) is
always satisfied since S is positive definite,

The question naturally arises "How difficult is it
to verify condition (5.2)?" The fact that the
left-hand side of (5.2) is linear in A and C
and the fact that a positively-weighted sum of
positive operators is positive makes (5.2) much
easier to verify than might be apparent at first

inspection. For example, if A and C are memoryless

and if there are constants cil), a!k) (L =1, 2;

£=1, conp Pi jok=ls +--s B) such that for all
x€ER"
(1) (2)
02e, iIE'VQ(.’s”ijf_cij >0 (5.3)
L R ek e
(1) )
02ay" < & -v»}(g)ljk j‘ajk. >0 (5.4)

(where [g]i denotes the ij-th element of the mat-
rix M), thea one may readily verify that suffici-
ent conditions for (5.2) to hold are

(L) . 3. T
%3 T 4 H *Ry 8D 0 *8 (5.5)
2) T T

ij(ge e g R8>0 (5.6)

(where e, denotes the i-th standard basis vector,
i.e., the vector whose elements are zero except
the i-th which is a one). To verify conditions
(5.5)-(5.6) requires that one check the positive
definiteness of as many nxn-matrices as there are
nonzero elements in the set

(2) (L)

{cij ’ ‘jk |!.-1,2; i=1l, ..., Pi jlk-ll ceey h}

(which can be done,for example, by checking that the

principal leading minors of each matrix are posi-
tive (13, p. 341]). So, if the nonlinear system
:(4.4) is identical to the linearization (4.9) ex-

cept for N memoryless nonlinearities, then one need

only check the positive definiteness of at most
‘2N nxn-matrices to verify (5.2).

'6. THE CONSTANT-GAIN EXTENDED KALMAN FILTER (CGFKF)

[(A-VA(x)) ~H(CVC(x)) IL

Intuitively, it is clear that if the linearization
(4.9) is sufficiently faithful to the nonlinear
system (4.4), then the error response of the non-
linear observer (4.2) will bc close to the error
response one would get in the ideal situation in
which the linearization is exact. This intuition
is validated by the error-bounding results of (6],
[15]. Consequently, if the disturbances § and

0 are reasonably well approximated by zero-mean
white noise, then it is reasonable to expect that

a good suboptimal minimum variance estimator can be

obtained by choosing the residual-gain H to be the
minimum-variance-optimal gain for the linearized

% AT K 11 PAl W

system(4.9), i.e., the Kalman filter gain [14,

p. 214)

p=rc ot (6.1)

where L = _l_I_T > 0 satisfies the Riccati equationz

Aeaz-rco’

i~

CL+E (6.2)

o

and £ and O are the positive definite covariance
matrices of the disturbances £ and § respectively.
The resultant estimator is the constant-gain ex-
tended Kalman filter (CGEKF) depicted in Fig. 2.

A surprising and important consequence of the
CGEKF approach to nonlinear observer design is
that, in addition to yielding a suboptimally ac-
curate estimator design, the CGEKF design proce-
dure is inherently robust in the sense that even
a crude linearization (4.9) will suffice for re-
sidual-gain design. The CGEKF design procedure

_automatically ensures that the deviation from the

design linearization admissible under the condi-
tions of Theorem 2 can be quite large. The ex-

. tent of this robustness is quantified in the
' following result:

Theorem 3 (CGEKF Robustness): If uniformly al-
most-everywhere

s (6.3)
sqEezcelen >o,

then the CGEKF is nondivergent with finite gd.n.‘

Proof: Let
s=z+zcelc:r 6.4)
R-I.

Then (6.2) and (6.3) ensure that (5.1) and (5.2)
respectively are satisfied. The result follows

" from Theorem 2.

To fully appreciate the implications of Theorem 3
with regard to the robustness of the CGEKF design

2"0 assume that the required controllability and
observability conditions are satisfied so that
there is a unique positive definite solution of
(6.2) (cf. (14, pp. 234-243)).

3In general, 9, Z, A, and C may be chosen to be
dependent on X(t), in which case [ and H also
depend on X(t).

‘u with Theorem 2, no advantage with regard to

satisfying the nondivergence conditions of Theorem
3 results from choosing O, =, A, orC to be
dependent on X (cf. footnote 1).

e
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.r-;;m;:édure, it is instructive to consider the situ-
', ation in which for all x

A = 2 L e
€0 = (diag Wy, -ees W)C 6.7

so that all the differences between the open-loop
error dynamics system (4.4) and the design linear-
ization (4.9) are lumped into the p dynamical non-
linearities, N, (i=l, ..., p;, which are in series
with the system outputs. This is equivalent to all
nonlinearity in the system (4.1) being lumped in
. the actuators and sensors (see Fig. 4). It is em-
phasized that this does not mean that we are re-
stricting our attention to systems with only actua-
tor and sensor nonlinearity; rather, we are merely
stipulating that the actual system's open-loop
error dynamics have the same input-output behavior
as such a system.

For simplicity, we further assume O is of the form

117 922, cose epp) ¢ (6.8)

With (6.6)-(6.8) satisfied, the nondivergence con-
dition (6.3) of Theorem 3 reduces to

© = diag (6

T o -1 .1 -1 2L
IC diagl(f,, WN (x)= 3}, ...y Bpp(vgp(lt) 3)1ct

+22s0, ; (6.9)
2 -
which is satisfied if
oy, (0 2 3 (i=l, ..., P) . (6.10)

The condition (6.10) establishes a "lower bound"
the inherent robustness of the CGEKF design pro-
cedure, i.e., every CGEKF design can tolerate at
least nonlinearities satisfying (6.10). One can
interpret this inherent robustness in terms of the
gain and phase margin of the feedback representa-
tion (cf. Fig. 3) of the CGEKF error dynamics as
follows: Suppose that the yi(i-l, .+ss P) are lin-
ear dynamical elements with respective transfer
functions Li(s) (i=1, ..., p). Then, condition
(6.10) becomes

Re(L, (301 > 3 (i=l, ..., B, (6.11)
i.e. the Nyquist locus of each Li(jm) must lie to
the right of the vertical line in the complex plane
passing through the point 1 + jO. For example, if

L,(s8) (i=1, ..., p) are norzadynamical linear gains,
ite., Li(jm)=k, then (6.11) becomes

1
> =, 6.12
k23 (6.12)
Alternatively, if

36,

Li(S) = e (i), coey P)

corresponding to a pure phase shift of angle ¢
(i=1, ..., p) in the p respective output channéels
of the open-loop error dynamics system, then

o M e b ape = %

condition (6.11) becomes
lo,] < eo. = (6.13)

One can interpret the conditions (6.12) and (6.13)
as saying the CGEKF' design procedure leads to an
infinite gain margin, at least 50% gain reduction
tolerance, and at least + 60° phase margin in

each output channel of the error dynamics feed-
back system (Fig. 3) — the margins being relative
to the ideal situation in which the linearization
(4.9) is exact. Enaine®rs experienced in classi-
cal servomechanism design will recognize that
these minimal stability margins are actually quite
large, ensuring that the nonlinear observer error
dynamics feedback system of Fig. 3 will be stable
despite substantial differences between the de-
sign linearization (4.9) and the system (4.4).
Consequently, the CGEKF design procedure is as-
sured of yielding a nondivergent nonlinear ob-
server design for systems with a good deal of non-
linearity.

This surprisingly large robustness of the CGEKF
design procedure is mathematically dual to the
robustness of linear-quadratic state-feedback
regulators reported in [2]-[3], wherein full-state-
feedback linear optimal regulators are shown to
have infinite gain margin, 50% gain reduction tol-
erance, and + 60° phase margin in each input
channel. This duality,which is a consequence of
the symmetry between the equations governing the ;
regulation error of linear optimal regulators and |
the equations governing the estimate error of the
CGEKF (cf. eqns. (B.l) and (4.3) of [2] vs.
eqns. (4.4) and (6.2) here), provided the princi-
pal source of inspiration for the work leading
to these robustness results.

7. PRACTICAL CGEKF SYNTHESIS

The results of the preceding section provide a
basis for computed-aided-design of practical,
nondivergent CGEKF estimators. The following
procedure shows how these results might be em-
ployed for this purpose:

Step 1
Pick constant values for A, C, Z and O. The values

of A and C should be initially Chosen to reflect
as closely as possible the derivatives VA(x) erd
VC(x) respectively, i.e., so that”g-vt‘\(;ﬂl and
IE-VE(g_)"are small, at least for those values of x
which are most probable — statistical linearization ;
methods (cf. (16, Ch. 7]) may be helpful in this
regard. The matrices O and : should be initially
chosen to reflect the covariance of the distur-
bances 8 and § respectively. If the input-output
relations of the operators A, B, and C are not
precisely known, then the designer may wish to
consider compensating for this using state-aug-
mentation following the spirit of [17]-(18] in
order to reduce bias errors.

Step 2

Compute I and H from (6.1) and (6.2). This can
be done with the aid of a digital computer using
available software for solving the Riccati equation.
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Step 3
Test the resultant CGEKF design for nondivergence.
This can be done any of the following ways:

a) By checking the conditions of Theorem 3;

b) By direct digital Monte Carlo simulation;

¢) By approximate describing-function simulation
1, § 6.4].

If the estimator is divergent, go to Step 5; other-
wise, procede to Step 4.

Step 4

Check the nondivergent CGEKF for satisfactory per-
formance, i.e., for acceptable error statistics.
This can be done using one or more of the follow-
ing approaches:

a) By direct Digital Monte Carlo Simulation;

b) By approximate describing-function simula-
tion [1,§ 6.4];

c) By using the error-bounding results in (6],
[15].

If performance is acceptable, stop. Otherwise,
introduce estimate dependent matrices &(2(:)),
C(X(t)) so as to further reduce ||A(x)-W(x)|| and
TSx) - C(x)|: as in Step 1 statiStical lineari-
zation methods may be help here. Compute I (X)

and H(%) from (6.1) and (6.2) and return to Step
3.

Step S5

Take the divergent CGEKF and, assisted by a comput-
er, determine the values of x for which the con-
dition (6.3) is not satisfied. Modify the matrices
A and C so as to reduce the magnitude ||a- VA(E}"
2nd || € - ¥C(x) || at these values of x. 1f nec-
essary, adjust the Z and O matrices. Return to
Step 3.

For systems that are not "too nonlinear" this pro-
cedure can be expected to converge rapidly to an
acceptable CGEKF design. However, for highly non-
linear systems, the procedure may not lead easily
to a satisfactory design, even when such a design
exists. A noteworthy limitation of the procedure
is that no explicit method is provided for select-
ing the "pest" modifications of A, C, £, and _(2 as
required in Step 5.

Even in cases where a nondivergent CGEKF estimator
is not possible, it may be possible to exploit
Theorem 3 to construct a CGEKF estimator which, if
properly initialized and if not subjected to ex-
cessively large disturbances, has satisfactory per-
formance. This is accomplished by using estimate~
depcndent matrices A(X), C(%), O(X), and (%) so
that HZH(X) and LZE(%) become estimate dependent.
Provided that the estimate error €=x-x remains small
enough so that x lies in the region in which (6.3)
is satisfied, then the estimator cannot diverge. It
is emphasized that such an estimator requires care~
ful initialization and may not be able to recover
from large disturbunces without re-initialization,
much like the EKF which in general has similar lim~
itations.

8. SUBOPTIMAL NONLINEAR OUTPUT~FEEDBACK CONTROLLERS

The CGEKF results of the present paper combine with
the results of [2]-[3]) on the nonlinearity toler-
ance of linear-quadratic state-feedback (LQSF)

control laws to suggest a simple, practical non-
linear extension of the celebrated linear-quadratic-
Gaussian optimal output-feedback control design
technique. The idea is to cascade a CGEKF esti-
mator with a constant LQSF gain matrix, both opti-
mally designed for the time-invariant nominal
linearization of the system (4.1)

k=Ax+Bu+f
(8.1)
r=Cx+8
with performance index
T
Ix, w 2 E (Lim %jfmg x(t)
T+ (8.2)

+ uT (DR u(t)at]
where

E and § are zero-mean white Gaussian with re-
spective covariance matrices Z and ©;

A, B, C are matrices of appropriate dimensions;

R, Q are positive definite weighting matrices of
appropriate dimensions.

In general A, B, C, R, 2, 9, and % may be chosen
to be nondynamically dependent on X. Assuming
that the linearization (8.1) is exact, the optimal
Kalman filter residual gain is given by (6.1)-(6.2)
and the optimal LQOSF feedback is given by

=3 BT

WS Kx - (8.3)

where K = 5? > 0 satisfies the time-invariant
Riccati equation

~KA+AK -KBR'BK+Q. (8.4)

o

Cascading the CGEKF with the feedback (8.3) leads
to the suboptimal nonlinear output-feedback control

law (see Fig. 4) t
a=-R'BKE

d A a T a=l,a

awX=AR+Bu-1c 0 @@y (8.5) |
g=Cc2.

This approach to suboptimal nonlinear output-feedback 1

control design is similar in spirit to the approach
outlined in [19], wherein an extended Kalman filter
is cascaded with a time-varying suboptimal feed-
back gain; however the pre-computed constant gains
in the control law (8.5) make it drastically sirpler
to implement from the standpoint of real-time com-
putational burden. The remarkable robustness of
the CGEKF design procedure and of LQSF control
designs [2]-[3] assure that this approach will pro-
duce a stabilizing feedback control law for systems
with even substantial nonlinearity. The extent of
this robustness is quantified in the following
result:

Theorem 4 (nonlinear output-feedback robustness):

If uniformly almost-everywhere




A-YAw + (-E£cT oY (€ - VCEIL

T =1

+%(_E_+£gg cl) >0 (8.6)
and if (8.7
Kia-A + (@B (-F'2'0)+ 2o+ xBRBR,

then the system (4.1) with output-feedback (8.5)
(as is depicted in Fig. 2) is finite gain stable.

Proof: This result is a direct consequence of
Theorem B.l of [2] and of Theorems 1 and 3 of this
paper: Applying Theorem 3, condition (8.6) ensures
that the CGEKF is nondivergent with finite gain;

applying Theorem B.1l of [2], condition (8.7) ensures

that the system (4.1) with full-state feedback
/8.3) is stable with finite gain; the result fol-
lows from Theorem 1l.

We emphasize that the matrices A, B, C, g, R, O,

Z in general can be chosen to cdepend on X. This
;ay be helpful in optimizing the closed-loop tran-
sient response of the suboptimal nonlinear output-
feedback system — especially, in adjustable set-
point regulator designs, where it may be preferable
tc have a feedback law which is dependent on the
system's operating point.

9. CoNCLUSIONS

Efforts to find methods for reducing the real-~time
computational burden of the extended Kalman filter
have led us to consider the possiblity of a con-
stant-gain extended Kalman filter (CGEKF), de-
signed to be optimal for a constant linear approxi-
mation of the actual nonlinear system. Since the
residual-gaia for a CGEKF estimator is constant
and precomputable, the enormous real-time computa-
tional burden of error-covariance propagation and
residual-gain updating is eliminated, drastically
reducing real-time computational requirements.
Because in many applications the linearization and
disturbance modeling approximations made in CGEKF
design may be only slightly cruder than the gross
approximations that are made in EKF design, it is
expected that the error-performance or CGEKF de-
signs may actually be competitive with EKF designs
in many applications.

By representing a nonlinear estimator as a servo-
mechanism in which error is the output to be re-
gulated, we have been able to apply modern input-
output techniques of analysis to generate results
explicitly characterizing the robustness of CGEKF

estimators —and, more generally, estimators having

the structure of the nonlinear observer (4.2) ——
against the effects of approximations introduced
in designing the residual gain. These results have
the form of analytically verifiable conditions on
the deviation of the constant linear design model
from the actual nonlinear system. The conditions,
when satisfied, assure that the estimator is non-
divergent. The conditions have been used to prove
that the CGEKF design procedure is intrinsically
robust in that the procedure automatically leads
to a nondivergent estimator design for systems

with even a relatively large degree of nonlinearity.

The extent of this nonlinearity tolerance is
quantitatively characterized by Theorem 3. The

synthesis of practical CGEKF designs has been dis-
cussed and it has been shown that the CGEKF non-
divergence conditions can be exploited to con-
structively modify and improve CGEKF designs.

A new method, based on linear-quadratic~Gaussian
optimal feedback theory, has been proposed for the
synthesis of suboptimal output-feedback control
laws for nonlinear systems. The method leads to
a simply-structured nonlinear dynamical feedback
law that is drastically simpler to implement than
suboptimal linear-quadratic-Gaussian nonlinear
feedback controllers incorporating a time-varying
gain and an EKF (cf. [19]). The feedback law
decomposes naturally into an LQSF gain matrix and
a CGEKF estimator in a fashion reminiscent of the
way the separation theorem of estimation and con-
trol leads to a similar decomposition in linear
problems. It has been shown that the inherent
robustness of the CGEKF design procedure and of
linear-quadratic state-feedback combine to assure
that this design approach will lead to a stable
feedback law for systems with substantial non-
linearity.

A limitation of the synthesis procedure for CGEKF
estimators presented in this paper is that for
highly nonlinear systems the effectiveness of
the procedure becomes greatly dependent on the
designer's intuition and judgement in selecting
the linearization and noise covariance matrices
(A, B, C, £, O). While the use of (6.3) in Step
5 provides valuakle guidance in this regard, it
does not provide a clearly defined algorithm.
This will be the topic of future research.

Regarding other future research possibilities, it
is noteworthy that the assumption in this parer
that the dependence of H on X is memoryless is
superfluous; that is, all of the conclusions,
results, and proofs in this paper remain valid
without this assumption. However, if H depends
on _% in a-more complex way — such as it does in
the extended Kalman filter — it is generally much
more difficult, if not impossikle, to verify the
nondivergence conditions of Theorems 2 and 3.
Future research may reveal practical tests, simi-
lar to those introduced in this paper, for veri-
fying the nondivergence of extended Kalman filters
and other model-reference-type estimators having
a residual-gain with a complex dynamical depen-
dence on the estimate history.
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APPENDIX

In this appendix the results of Zames (7] (as
elaborated upon in (9]) are used to prove Theorems
1 and 2. We begin by introducing a definition.

Definition: Let f: X*Y be an operator. Then the
incremental operator f(.’i) is defined by

E(}_)Q_ﬁgé Flx + 8x) - F x (A1)
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for all x and §x elements of X.
Proo: of Theorem 1:
BGx=BGixte) =BG x + (BG(x) e (A2)

A L
Let £' = £ + (B G)(x)e. Then the dynamics of the

closed-loop syStem with u = G X satisfy

d .
H;-(é}(sg))‘!‘fs. (A3)

whereas the dynamicswith u = Ox satisfy
Lx=A+BOx+E. (ad)
dt= ~ ~ <=

Since by hypothesis (A4) is stable (finite gain
stable), it is sufficient to observe that

Hen 2115+ O@ell <&+ IS woel
HEN +3®3G el <= (as)

Proof of Theorem 2
Let s denote the linear functional operator s-;dé-.

' From (4.4)-(4.5) it follows that

se= (Ax)-H C (x))e - (E-HSH). (R6)

Pre-multiplying by 2-1, introducing the dummy vari-
able w and the arbitrary constant €>0, and re-
arranging yields

Tk

(g_l_e_) = (s+€) P w (A7a)

~

W= - (A + HC) - eDP (B le)- (§-H 6). (a7D)

From Theorem 3 of [7) a sufficient condition for
(A7) to be finite gain stable.is the existence of
an £>0 such that5

(s+e)" el 5 o (Aga)

(-A(x) + HC(x) - €1)P > 0 (A8b)

uniformly for all x € “2(R+' R"). Parseval's theorem
ensures that (A8a) holds for all € > 0. Define

fé (g-é-g(g—g))gvi-.s.. (n9)

Then in view of (5.1), a necessary and sufficient
condition for (A8b) to hold is

Flx) >0 (A10)
uniformly for all x € MZ(R+' e"). Now, for all
n
ne MZ(R*' R).
f(g)ﬂé Fix+n -Fn

b3l
VF(z)dz

b

1
VF(x+p M) dp . (Al1)

o’

So, for all ne Mz(R*, )

<, Fan>=<n, [9F(x+pn)n ap>
1

« [/ <n. VFixsomn > ap . (A12)
0

Thus, a sufficient condition for (A10) and hence
(A8b) to hold is VF(x) uniformly almost-everywhere
strongly positive; that is, uniformly almost-
everywhere

(A-VAG)) - Hc - ) ip + Ss> 0. (a13)
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